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Abstract

4 Concavity arguaents are eaploy.d so as to obtain growth

estiaat.s for solutions to two initial-value prbob1e~s associated

with a class of daaped integrodifferential .quations in HUbert

space ; by apply ing the results obtained in this abstr ict setting

we obtain growth .stiaates for the gradients of Iectri~ dis-
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1. Introductio!~

In (1] we employed a modified version of a concavity argument

due to Levine (2] to obtain growth estimates for solutions to a

class of initial-value problems associated with an undampsd lineat

integrodifferant ial equation in HUbert space ; our results w~r

subsequently applied to the derivation of growth estima tes (or

the gradients of electric displacement fields occuring in a

class of rigid nonconducting material dielectrics of Maxwell-

Hopkineon type. Unlike the stability and growth estimates which

were obtained in (3), the results of(i)do not require that the

electric displacement fields belong to certain uniformly bounded

sets in a given function space.

In the present work we will extend certain of the results

of (1) to a class of damped linear integro -ential equations

in Hu bert space; it will be clear from tb. rn of our results,

and the specific content of the associated hypotheses, that

analogous estimates for the undamped equations can not be recovered

from the estimates contained in the present paper by simply settirg

the damping coefficient equal to zero. The growth estimates derived

in §2 are applied , in §3 , to the evolution of electric displace-

ment fields which occur in a class of holohedral isotropic rigid

dielectrics of the type first studied by Toupin 6 Rivlin (4];

stability and growth estimates for electric displacement fields

which ~~cur in such dielectr ics were previously obtained in [5]

but , s ’ ~ [3), these estimates were derived via a logarithmic

convexi~ y argument which , by its intrinsic nature , requires that



the class of electric displacement fields considered as admi~~~ib)e

sat isfy an a priori upper bound in the norm of a certain Hu bert

space .

• 2. Growth Estimates for a Damped Abstract Integ~odifferential

Equation.

As in (13 we will denote by H any real Hilbert space with

inner-product c ,> and norm II (.• ) I I. By H+ we denote a second

Rilbert space with inner-product < ,
~~~~ 

and norm I I( ’) l I~~
; we

assume that H~ c H, both algebraically and topological].y , and

we let y > 0 denote the embedding constant for the map i: H , H

H (i.e., for all v c H1 , Il v i ) � y I I v I I ~~). Finally we define H_

to be the completion of H under the norm II (• )II that is given by

11 w 11 _ = sup (jcv ,w> I / J j v J J~~)
vcH~ 

—

Appearing in the statement of the abstract initial-value

problems which we will c~nsider are operators N c Ls(H + , H_)

and K c L2 ((_a~,.); LsCH+,H_ )) where Ls(H+,H_ ) denotes the space

of all bounded linear operators from H+ into H_ . We assume

that KtCt), the strong operator derivative of K, exists and that

€ L2 CC_ co ,co) ; L5 CH~ ,H _)). In addition we wi].l require that

(i). — <v , K(O)v> ~ 0, Yv H ,
(~~) <v , Nv> � 0 , Yv H,

and
(iii) !

~
I I I
~
(t)II Ls(H,H 

)dt < and

_m_ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — — —
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-

I

J ~ f~.I I~ ttt_t )II Ls H+,H )
dtdt 

. 

~~~

for each T > 0. We remark that whereas (ii) was not needed for

the logar ithmic convexity argument that was employed in (5] we

did require in (5) that KC0) satisfy a hypothesis which is

stronger than (1) above , namely ,

Ci’) — <v, K(O)v > ~ K J I v I I .~~, Vv c H,

with K � yT sup I Il (
~ 
Ct) I I L (H H )(0,”) S + ‘ —

Now , let F > 0 be a given real number . The problems of

interest to us here assume the following forms :

Problem A For any a > 0 denote by u~ a strong solution
W to

(2.].a) + Fu~ — NUa + f
t
~K(t_t)~~ (1)dT 0, 0 � t T

(2.lb) ua(O) = 
~~~~~

‘ 
u~(0) = 

~o ~ o’ Yo £ H~~)

C2.lc) Ua (~~) = U(t), — r < 0

where U:(-~.,0) + H, and sat isfies f
0
~~I l U ( T ) H ~~dr  < ...

We seek to derive a lower bound for sup ti u a 1i + in
-

terms ofa , y, F, u0, v~ , U,  the length of the interval (0,T),

and the operator norms of N, K, and

(1) ~
a 

€ C2UO ,T); H,), for each a > 0, with C~((0,T); H~)
C (I0,T); H _ ).

~~~~~~~~ —— .- -~~~~~~~~~ — ~~•
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Problem B For any 8 > 0 denote by a strong solution to

•(2 .2a) 
~~~ 

+ ru~ — Nu8 + J
t
~K (t_r)u B Cr )dt = 0, 0 £ t c T

• (2.2b) UB CO) = 

~o’ ~4Co) = Yo ~ o’ Yo ~ H~)

(2.2c) ua C.t) g C B ) U C r ) ,  — < r c 0

• where gC J)  is a monotonically increasing function of 8 for

0 < ~ 
< •. We seek a lower bound for sup 11 u 811 + in terms

—

of the data indicated above.

In each of the two problems stated above we will require,

in addition to conditions U) - Ciii) that 
~o’ ~~ 

and U satisf y

Civ)  cu0,v0> > 0

and 

—

~J t Cv) 
~~~~~ 

/~c.~
(
~~

t )T JCt)dt  > c 0

• We are now ready to state and prove our first estimate,

namely,

Theorem II.]. Let ~~
a be a strong solution to (2.la) - (2.].c)

and suppose that

(2,3a) (a) 
~ o 1 i

2 
~ <

~o’ !o>

• 2cu ,v >
(2.3b) (b) T Zn I —

j2<U o, Vo> r I I u 0 I I

Then for each a > 
~~~~~~~~~ ~~~

>½
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(2.4) sup I Ju aCt )IJ + ~ 1 t (T)th>I]½ r
-“<t<T L

where

(.2.5) IT ½ II
~~

II Ls~~~,l i)  + J~
I I
~~

C
~
T )II L5~~~ ,H )

dt

+ f ~ fL,I I ~
(
t(t..r )II L (.H~ ,H )dtdt

S —

i I~~~~
.

I
’ Proof Suppose that for some a =

& > 11 v 011/<u0, ~~ >½

- r <u0, f0~K(-t)U(t)dt>~½(2.6) ~~~ 11 .~a 11 < I — — — I ~‘TL ~‘T i

where T satisfies (2.3b). If, as in El], we set

(2.7) F
~
(t) = <U a (t ) ,  ua Ct)> , 0 ° � t < T

then a direct computation yields

(2.8) . F&F&” — (&+l)F ’2 = 4(&+l)S~~. 

— —

+ 2F~{<u
a, 

~~~~~ 
- (2&+l)<u~ , u~ >)

where S~ ,i ~
a ii 2 II u ~ ,I 2 

- <n a
, u~~> � 0 by virtue of the

— —— ---— — - —.--— .-.-— rn — ~~~ ~~~~~~ — —
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Schwartz inequality. Thus

(2.9) F&F&” 
- (&+1)F~~

2 
� 2F~J~ , 0 � t c T

where by (2.8) and (.2.la)

(2.10) J&(t) 
= <fl

a
, NUa> - <fla, f

t K(~ _ T) Ua( T) dT >

— F<u~ , u~
> - (2&+ l)<u ~~, u~ >

We will show that Ee
l’tCF~~)~]~ � 0 for 0 � t < T by proving that,

under hypotheses Ci) - Cv) above, J&(t) � _ ( r/2 ) F& (t); this, in

turn , will lead to a contradiction of (2.6). Directly from

(2.10) we have

(2.11) J~~t) = 2<u~ , Nu&> — ~~ cua, f~~KCt_t)u
&(T)dt>

— r<u~ , u~
) - r<u&, 

~~t
> — 2 ( 2 + l ) ) <u ~ , 

~~t
>

- 4&<u~ , NU U > - 
~~zj <u s, f

t~ K ( t _ I ) U a (T)d~ >

— r<u~ , u~ > — r<u & , 
~~~~~~~~ 

+ 2F(2&+l)<u~ , U~~>

+ 2(2&+].)<u~ , f~~ K ( t _ T ) u & (t ) d T >

ny. integrating (2.11) from zero to t, using the fact that

(~~.12) ~~~~~~~~~~~ 
~~o> — ~~~~ f

0
~K( t) u ( t) d t >

— — 2
— V i <u

0
, 
~~ 

— (2a+l) I Iv c~I

— .. -• ,- -•-•— . - 
_

~~•1••••••••_• . — , —~• •••~~ ~~~~~~~~~~~~~~~~~~ ~• .  —. . , .~ k L -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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; I
and dropping the term proportional to JI u ~ l I 2, we obtain

(2.13) J&Ct) ~~~
. J~ C0) - 2&~~<~~

a
, NUa> - &2

<U , 
~~~~~~

- <fl a , f~~KCt_T)U
&CT)dT>

+ &<u o, f~~ K (— t ) U ( t ) d t >  . .
. 

- 
- i

- ~~~~~~~~ > - &<u~ , !o>
~

+ 2(2&+1)f~ <u~~, f
t~ K (t _ X ) u U (X ) d X > d t

(2&+l)(&2<u0, 
~~o> — 1 1 v 0 11 2 .i — 2&<~~

a
, NU~~ >

+ 2(.2&+l)f~<u
a, JT K(t .A ) u a (A ) dA>dt

- <u & , f
t..K Ct_ T ) U a (T) th> - r<u C

~, uct>

However , in view of hypothesis (.i) above

(2.14) f~ <u~~, f
t
~ K ( T_ x ) u ct (x)dx>dt ~

~~ 
<us, f T K (r A) u a (A) d A> d T

— f t <u & (t) , f~~ K~ ( t _ X ) u a (A ) dX > dt

m d , therefore, (2.13) yields

� (2&+l)[ & 2 q.i ,  
~~~~~~ 

— 1
~ o

1 ) 2

+ 2& 
~~~~~~~~~ 

f 0 x( t) u(t )dt> I)

-
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~ -~~~~~~~~~

.•
~~

— - - — .- .• .—,
~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .•-~~~~~ - 

-
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- 2& <fl
a , Nu ct>

+ C4&+l)<u&, f
t K (t_T)~l

ct(T)dT>

— 2(2&+l)f~<u
ct, f

T K C T A )uct(A)dX>dT

a a
- r<u ‘

where we have made use of hypothesis Cv) above. If we set

Il cu , f ~ K(.— t ) U C r ) d i> 17½.0 -~~~- i
T,cz L JYLT

where is given by (2.5) then routine estimates employing the

the Schwartz inequality , coupled with the assumption (2.6),

yield the lower bounds

(2.16a) <u~~ f Ct—t )~~ Ct)dr> ~ 
— YM~~~,; f

~
J J l ( ( P ) i I L s (Jj ,~.f ) dP

(2.16b) -.f~~cu’~, f

- yM~~; f ~ f~~ I I~ t (t_t) I I L5 (H+ ,H ) dTdt

and

(2.16c) - ~~~~ Nu~Z > � - yM~ — I I N I I L (H— —— ,~~ — 
S +‘ —

Combining the above estimates with (2.15), making use of the

definition of ‘T 
again, and using the assumption that

& > I Iv ~~II /<U~~ Nu0>½ we easily obtain from (2.15)

-• .-.• .,
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(2.17) J&(t) 
� — r< u a , u~ > — ~j- F— ’(t ) , 0 � t < T

Therefore , by (2.9.)

(2.18) F&F&
t’ - (&+1)F~

2 � - FF~ F~ , 0 � t < T

or

(2.19) [el’t (F
&~~~

) t ] t  � 0, 0 � t < T

Two successive integrations of (2.19) easily yield the lower

bound 
-

(2.20) F_ a (~ ) � F—~~(0) [l - U_ e t )&F~ (0) / rF & ( O) 3 l

The expression in the brackets above will vanish at

(2.21) t 
~ 

£flL2<UcD~ 
v0>/(2<u0, ~~~~ 

— r i 1u 01 1 2 ) ]

provided that [rF;(0) /&F~ (0)]  c 1. But

FF— (0) r&2 1)u011 2

(2.22) a • 
< 1

& F — ( O )  2& <&u 0, Yo>

• if , as per the hypothesis of the theorem , the
• initial datum is restricted so as to satisfy 11 u 01 1 2 

< <
~o’ ~o

>

By our other basic hypothesis, i.e., (2.3b), it follows that
• 

t c T and , therefore, sup I iu~(t) II = + ~~~. Thus,
0<t<T

( 2 . 2 3 )  +~~ sup II u ctCt )II ~ Y 
sup Ii U ct(t ) Ii ~

-~<t<T 
-

- • -—- - •--- —~~~ -— • • 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —
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which contradicts (2.6) and establishes the growth estimate (2.’4 ).

Q.E.D.

The last theorem admits the following corollary whose proof

is immediate (based on our previous computations.):

Corollary 11.1 Let f Cct ) be a real-valued function for 0 < a

with sup(~~~~~) c ~~~. For each a > 0 let u~ e C2([0,T
~
); H÷) be

a<0 ~ -

a• strong solution to (2.la), on [0, Ta
), subject to (2.lc) and

the initial conditions

(2.24) uctcO) f ( a ) u 0, u~ (0) v

<U
0~ V0> f f  \

where - 

2 > sup C and
IIu0 H a>0

(2 . 2 5 )  T~ > Zn [2 ct< u 0, v0>/2c z< u0, vo > - F f ( a ) 1 1u 0 1 1 2
J

Then for each a satisfying

(2.26) fCct) � I o I II’<Uc~~ 
N u > ½

• it follows that

a Iku 0, f °~ K ( - T ) U ( T ) d T > l  1½ 
-

• (2.27) sup Il u (t)II ÷ � I — — — —I /fT~z )
- L.. 

~~~

where 1T is given by (2.5) with T -

~~ 
T
~

Having completed our formal discussion of problem A we
ii

now turn our attention to the system consisting of (2.2a) - (2.2c)

and ~;td tc

~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~ - •~~~~ 
_ _  _ _
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• Theorem II.? For each real I 0 lit C~((O.fl i ,) be ~

strong solution of (.2.2a) - (-2.2c) as~d suppose that th~ ~~

datum sat isfy

(2.28) 
~~o’ 

W~
) IlV oll

Let 4 ‘ 0 be any positive conatant~ then If

T ) Zn [2o 6’u0, ~~~~~~~~~ !o~ 
-

where 04 ~ (F11 u 0 11 2/2(u0, ~~ ‘)  ‘ 6 ,

(2.29) sup 1 u 1  
• 

a ~ j . . t y t d t I j I .,1.~~~
-

for all 8, 0 ~ I ~

Proof. The proof strongly resembles the line ~ aig~ment followed

in the proof of the previous theorem i’;~~~~ one important dtf ~~r - r c ~r s~~

We assume that for soae B 8, 0 ~ C

(2.30) sup N,

where

(2.31) NT,~ 
= ~~~

1 r 2a,~u , V ~

• anc T > ~~~t n Ir L2a 6(~o, !o> — r 11 u 011 2

Defining F~~( t )  cu~(t), u1(t ) , 0 s t •;• , we n~. c~~pute that



rT - -  

~~
—

~~
- —
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for any ~s ) 0

(2.12) r1rj — 1 i ~ 1.5 $  . 0 s ~ 1

where

(2.33) L5,1
(t) • ~~~~~~. ~~~~~~~~

- 4~~~~. !~~~(t—t )~~ (,)dT s

— - (~~ ‘i)iu ’, 43

A d Lr.ct co*putatkon w1o~ous to tha t used ~n ~~~~~~~~~~~ Ira.

(2.10) to (2.lb) th.n yields

(3.31,) L01
(t) a ‘~ “~~~~?o ~?o’ — IIv ~0II 2 J — ~~~~~ 4?

• :g ( ; 1 •
~~

) I 4 % a
~~
. J~,,k(—t)U (t)dt3I

— 25tu’, i~~

• (Uç, 4 l ) C U’ J~~P~(t-t)u
1(t)dt)

- 2(2Q+l)f~ C). J
t y..(t_a)JU)dA ,dt

If we now aske use of (2.2$). so as to drop the firs ~ ezpre..ion

on the right-hand side ci (2.31,). and then employ ~~ ass~mpution

embodied in (2.30) to bound, froa be low, the last three expressions

in the above estimate we easily obtain

(2 .35 )  L5~~ (t) a — ~~ F~ (t) + 2(2a.l)g(j)jc u0, J
0 ,X (- t )~J (t )d t ’$

— (2c1.lhl14,j {c2~:1
)Iu

~~
IILS(H ,fl~~



*~ ! - .
~~ -

—i i-

•

+ 2 J~ J~~
1i~~ (t-

~
)I1 L t h , H )dTdtJ

H
(2.36) L~~~(t) a — F~(t) • 2(2.+l)f6CR)I(~oi J~~~(—t)I~(t)du i

— YP4,j(½II
~~
Il g

S(n,,,4 )

• J I I ~~(P)II L5(n,,
a )d~ •

• - ~~F~(t)

in view of the definitions of and NT,A Thus , by (2.3k ) and

(2.36 2
) it follows that

- (2.37) 
• 

F~Fj - (a+l)I~
2 a — rF~F~ , 0 s t c T

for any a > 0. Integrating (2.37) we find the estimate

(2.38) F~(t ) a F~(0)(l - (1_ .-Ft )af~...(0),rr~(o)3
l

However , (2.38) implies that F$(t) tends to + • as

I 2uCu , v >
~~~~~~~~~~~ 

:
y 

n I
L2a<~o, !o> r 11 u 011

(provided we now choose a

(2.39) E ( r J J u 0 1. 1 2 /2  <U0, v0>)  + 6



~~~7r 
_ _ _ _ _ _ _ _

r • 
-1k—

‘1

so that t , exists). By virtue of the hypotheses of the theorem

T > t and thus sup J J u ~II + . The contradiction to (2.30)
C O T)

now follows via the same type of argument that was eemp]oyed

in the last theorem. Q.E.D.

• 3. Growth Estimates for Holohedral Isotropic Die lectrics

Let n be a bounded region which is filled with a non-

conducting material dielectric; we assume that 3fl, the boundary

of fi, is smooth enough to admit application of the divergence

theorem. Let E, B, P, and D denote, respectively , the electric

field vector , the magnetic flux density, the polarization vector ,

and the electric displacement vector in a; the fields £ and D

are related by

1 + }~

where £0 > 0 is a physical constant. If we define, in the usual

manner, the magnetic intensity H via

• I
- I H ~~

where c is the speed of light in a vacuum , then in a Lorentz

reference frame (x’,t), i = l,2,3,Maxwell’s equations have the

form

(3.la) ~~~+ cu r 1 E = O , d iv B :0

(3.lb ) curl R~~~~~~:O , d i v D :O

_ 
• -~~~~~~~~~~~~~ • • -~~~~~ -- • - • •-~~~~~~~~~~~~~~~ •~~ • - - • - - -
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provided the density of free current, the magnetization , and

the density of free charge all vanish in ~2 and the dielectric

medium is non.-deformable. In order to obtain a determinate

system of equations for the fields appearing in (3.la) and (3.lb )

we must specify a set of constitutive relations, e.g., in a

vacuum p = 0 and thus

• (3.2) D C oE~ 
H -~~j~~~B

while in a rigid, linear, stationary nonconducting dielectric

• these relations assume the form

(3.3) D = . 
~~~ B = p • H

with € and p constant second order tensors; these latter relations

were first put forth by Maxwell [6 ]  in 1873. A more general

theory was introduced by Volterra [7) in 1912 to treat the case

where the dielectric is anisotropic, nonlinear, and magnetized ;

his constitutive equations had the general form

t
• (3.4a) D(x ,t) e ~ ECx,t) + D(E(x,t)), x €

t
(3.4b ) B(x ,t) p • H(x,t )  + B (H(x ,t), x €

If the functional V is linear and isotropic,and the body satisfies

various restrictions that follow from material symmetry considerations,

then (3.’~a) can be shown to reduce to an equation of the form

(:~.5) D(x,t) E(x,t) + J
t~ ,(t_ r ) E(x ,T) dt , x € ~~ , —

- A ______ • • •~~~~~~~• •~~~~~~~~~~~~~~ • • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~ ••~~~~~• ~~~~• •~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
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which embodies the earlier constitutive hypothesis of Hopkinson

[8]. The relations ~~~~~~ (.3.~eb) were critically examined by

Toupin and Rivlin [
~~

] who showed that the a priori separation

of electric and magnetic effects which is hypothesized in these

equations is inadequate with regard to predicting such phenonmena

- 
- as the Faraday effect in dielectrics. Toupin and Rivlin [‘1].

thus proposed an extension of the~theory embodied in (3.~
a)

and (3.Leb) to one specified by constitutive relations of the

form

• (3.6a) D(x,t) a. • E~~
’(~,t) + Z c. • B~~~Cx ,t)

j0 —] j0 —J —

+ f
t
~+1(t,t) 

• E(x,t)dt + f
t
~$2(t,t) 

B(x ,r)dr

• I - n  I .’  n
• (3 .6b)  H(x, t)  ~ b. • E ’~~’(x ,t)  + 

~ 
d. ~ B~~ ’(x ,t)— — j=o ~ 

• 
~:o 

—] — —

11 ÷ f
t
*Ct ,T ) • E(x,t)dt + f

t q,2(t,r) 
. B(x ,t)dr

where ~~~~~~~~ ~~~~~~ etc., a.... d. are constant -

• — — at~
tensors and the kernels •~, ~~ i 1,2 , are continuous tensor

functions of t and T which are assumed to satisfy growth

conditions of the form

(3.6c) +1
(t ,t )  < C/Ct-t)1~~ , p > 0

It ‘ c e :  I~e shown that if the dielectric does not exhibit 
aging

then D and H are periodic functions of t whenever E and B are .

A ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — - —~~~—~~~~~~~~~~~~~~~ . _~ • . ••~~~~• _._- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~-~ ~~~~~~~~~~~~~~~~~~~
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By combining this result with the assumed growth conditions on

the kernel functions 4~~
, *~ and employing early results of

Volterra on the theory of functionals (7] Toupin and Rivlin

[4] conclude that and i~~~~ depend on t and t only through the

difference t-t; they then prove that if the dielectric has

holohedra]. symmetry (admits the full othogonal group as its

group of material symmetry transformations) the consititutive

-j relations (3.6a) and (3.6b) can be reduced to an uncoupled set

of the form

(3.7a) D(x,t) 
j~O 

a~E~
J
~~(x~t) +

.(3.7b) ~~~~~~ .1 b~B~
J ’ (x~ t)  + J

t
~4(t_t)B(x ,T)dt

where $, i~i are now scalar functions.

In this section we will examine the implications of the

growth estimates obtained in §2 for the special case of (3.7a), —

(3.7b) which corresponds to the simplifying assumptions

(3.8) a~ 0, b~ 0, j a 1

0, - < t < - t
t (3.9a) E(x,t )  = 

h
— -  Eh

(x ,t), th � t < O

0, -~~~< t < —
(3.9b) B(x,t)

BhC.x,t), _ t
h S t < O

P where th > 0 is a given positive constant and where 
~h’ 

is

1U -

- - - —  ~~~~~~~ -
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— 

assumed to satisfy

(3.10) lim 
~~~~~~~~~~~~~~~~~~~~~~~~ 

= 0
t+_t

h •

with a similar hypothesis applying to Bhlin 
[5] it was assumed

that th 
= 0). Therefore, the constitutive relations (.3.7a),

(.3.7b) reduce to

(3.lla) D(x,t) a0Eüc,t) 
+ 

f!~ •(t—T)E(x ,t)dT, x € a- -  h
and -

(3.llb ) H(x,t) b0Eüc,t) + 

~~ ~p (t— r )B (x , t)d t , x €

h

where we assume that ~~ are monotonically decreasing functions

which are (at least) twice continuously differentiable on (0,co).

If we now set

(3.12) . 
~(t) ~ (—l)~ 4~~(t), t a 0 -

n 1
- •

= ~~~
— •( t) ,  •‘kt) = f ~ +

1(t—T)+~~~~Ct)dT, n a 20 h

and define ~V(t) in terms of *(t) in an - analogous fashion, then

it is easy to show that the technique of successive approximations ,

when applied to (3.lla) and (3.].lb), yields, respectively,

(3.13a) Eüc,t) a~
1D(.x,t) + o j—~ 

x £

and

(3.13b )— - B (x,t) = b~~H(x,t) + b~~f
t ‘V(t—t)H(x ,t)dt , x c- -  ‘.1~~~~~~~~ 

..J th - -

L. ~~~~~~~~~~~ 

- - --
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As a direct consequence of (3.9a) and (3.lla) we h.ave

H 0, _ C D < t < _ t

- D(.x,t) h
- 

~~~~~~~~ —t~~ � t < 0

and , in view of (3.10),

(3.15) lim+Ja
(Dh(x,t))i(Dh(x,t))jdx = 0

t4th

We shall, however, require that the past history Dh of the

electric displacement field satisfy a slightly stronger condition
- 

than (3.15), namely, that

— (3.16) -lim+ Dh(x ,t)  = 0, uniformly in ~
t
~~

th

- If, in addition, Dh(x,
t) is continuous in t for all t < 0 then

for all x e 
~~
, Dh(x , 

~
th) = 0 (for our purposes it is sufficient

- to assume that D1~(x ,t )  is continuous in t for all t in some

neighborhood of 
~
th of the form 

[_t
h~
o]
~ 

a < 0).
- - - The inverted constitutive relations (3.l3a) and (3.l3b),

when coupled with Maxwell’s equations, our hypotheses relative

to the past history D~, and the vector identity

(3.17) ~V Cx )  grad(div V (c)) - curl curl V (x), x £ a—— — — — — — —

now yI . the following result regarding the evolution of the

electric displacement field D in a holohedra]. isotropic dielectric
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of the type specified by (3.lla) and (3.llb):

Lemma The evolution of the electric displacement field D(x,t),

Jf in any holohedral isotropic nonconducting dielectric (which

conforms to the constitutive hypotheses (3.lla) and (3.llb))is

governed by the following system of damped integrodifferential

equations in ~ -

(3.18) 

~ 
+ !(O)~~2~ + 4’(O)[D. — Co~ik~ .e

- .  b a2D
- (

~
2)
~
(t—t)6ik6j~ ~x .~ x1

0; i 1,2,3, c0 b0/a0+(0)

provided the past history Dh satisfies Dh(xrth
) 0 for all

z € ~~~and +(O)� O.

Proof By (3.13a) and the second Maxwell equation in (3.16) i;

F follows that div E 0. Thus, by (3.17)

(3.19) ~E(x ,t )  = - curl curl E(x ,t) 
• 

-

However , by the first Maxwell relation in (3.la) and (3.14b)

we have

(3.20) cur]. E(x,t) = - 
~~~~~~ 

B(x,t)

= — 
~~~~ H(x,t) - jj~ — ~P(0)H(x ,t )

— 
b

0 

f th t ’

U -~~~~~~~—•  —•—•~~~~~~~ -— --~- - -
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Therefore ,

(3.21) ~E(x,t) ~~~
- 

~~ 
[curl H(x,t)] + ~~~

- ‘V(O )curl H(x,t)
0 0 - -

+ 
~~~ 

f -~ ~~~
(t- T ) 0

~~’~ 
H(x,t)dt

= -
~~
- D (.x,t) + ‘V (0)D (x,t)

+ i~
- f ~ ~t

(t -T) D~
(.x,t ) d T

0 h - -
where we have employed the first Maxwell equation in (3.lb).

However,

(3.22) f ~ ~~~~~~~~~~~~~~~~ 
— f

~ t ~
‘ (t_ t )D

~
(x ,T ) dT

h - - h T - -

— ‘V (t_ t ) Du c , T ) J
t

t - - th

+ f ~ ~
V
~~
(t_t)D(x ,r)dT

h - -
- = ‘V~

(t_t)D(x ,t)I tt- -  h

+ ‘P ( t — r ) D (x , r ) d r

and so (3.21) may be rewritten in the form
I

(~~.23) ~E~~,t) b
~
’
~~~~

(x,t) + ‘V(0)D
~~~

,t)

+ +(0)DCx,t) + f ~ ‘V ( t — T ) D ( x ,T ) d t )

• - • j—-  ~- —,—— --•- •—~~~-~ •—~ 
- —

~
•
~
—-—• ---— ..— — ‘~~

------—
~
-
~
— 

~~~~~~~~~~~~~~~~~~~~~~~~ •-—•— ‘ --~~~~~~ — 

~~~~~~~~~~~~~~~~~~~~
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if we use the assumption that Dh(x, - th
) 0 for all x €

The result now follows if we substitute for E on the left-

hand side of (3.23.) from (3.13a) and rearrange terms. Q.E.D.

In conjunction with the system of integrodifferential equations

(3.18) , for the components of the electric displacement vector

D, we will consider initial and boundary data of the form -

(3.24a) D(x ,0) = D01x ) ,  D.t (x ,O) = D~(x), x € 
~~ (2)

(3.2’+b) D(x,t) 0, (x,t) e 3~2 x {
~
th ,  T).

It will be clear from the analysis presented below that our

results will also hold for more general boundary conditions

than the homogeneous condition specified by (3.2’4b). In order

to correlate the initial-boundary value problem (3.18) , (3. 2~a),

(3.24b ) with the abstract initial value problems considered in

§2 we introduce the same spaces which were employed in the analysis

presented in Cl], i.e., we let C~(~2) denote the set of three

dimensional vector fields with compact support in ~l whose components

are in C~(~) and we take H L2
(~~), the completion of C~ (a) under

the norm induced by the inner-product

(3.25a) <v ,w>L 
= J~ 

v±w~ 
dx

while H~ H~U~), the completion of C~ (c~
) under the norm induced

(2) and are assumed to be continuous on ~~~.
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by the inner - product

• 3V.  ~W .
(3.25b) <V ,W> H

l = f ~ ~~j-~~- ~~~~~~~~~ dx
0 j  J

Finally H H~~ U~), the completion of C~ (a) under the norm

3w. 3w.
(3.25c) J I V J  I~-l = supiEf~ 

vjwjdxI/(fa ~~~ ~~~ 
dX)~~]

w€H0 j  j

It is well known that H~ C c ~) c L2C12), both topologically and

algebraically , and that H~Ca) is dense in L2(c~); we denote the

embedding constant for the inclusion map 1: H~(~2) L~(~) by

y and define operators N £ L3(H~(c~); H~~(~))) and

• K ~ L ((~~~~~,c~ ) ;  Ls(H ~
(a) ; H~~(~))) as follows : for any V ~~ H~ (c~)

(3.26a) (Nv )1 ~
1(0){c

o6.kS .L 
~~~~~~ 

— v~~]~ c0 b0/a04’
(O)

b 3 V k(3.26b) (K(t)v). ~~(t )V .  — (
~~~

)
~~~

t ) cS .k~S.L 3xj3x~e

To verify the formal symmetry of the operator N we conipute~
3
~

(3.27) <!‘
~
!>L2 

= f ~ v.- (Nv). dx 

2 
-

CO6 k6 1 ax
~
ax
~ 

v.dx - 

~ v .v .dxj

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— 4~(0)IIvH
2

-

(3 )  Any v € H1(Q) satisfies v = 0 on 3~2 by virtue of a standardtrac~ thegrem . 
- 

~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~ • • • — -
~~~~~~

-
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-
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~~~~
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-- 
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~~~~
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-2 q -  

-- --—-—

= — ‘I’(O)[c0J J v i J ~ 1 + l l - ~l ! - ~ <
‘

— with a similar result for K~t), - < t < ~~~. From (3.27) and

the definition of c0 it is clear that condition (ii) of §2 , i.e.,

<v , Nv > L � o, Vv € H~ U~
) will be satisfied if ~i’(O) < 0 and

th0/a0) <0. Also, for any v € H~~~ )

(3.28) <v , K(O)v>L 
= f ~ v±[KcO)vJ~ dx

v.v.dx

2
— (

~~
)
~
(O)fa 6ik~jL 3x5

9x~, 
v1dx

= ‘V (O) I l v i L 
— (—~~~(O)[f~ v~ ~~~~~~~~~ ~~~~~

- - J ~~~~~~~ --~~dx]

b
= !P(O) JJ v Il~ +

- 2 a0 - 0

and , therefore, if (a0/b0) < 0 then

( 3 . 2 9)  — <v , K(O)v>L � 0, Vv € H~ (c~)— — — 
2 

—

pr v ited •(O) a 0 and ~kCO) � 0; with these latter conditions

statisf ied , and (a0/b0) < 0, it is clear that the operator K(O)

will satisfy condition Ci) of §2. Clearly , in the present situation ,

-- - -—-~~~~~~-—— ____ -__- — -~~~~~~rn__•_ - - -~~——~~ 
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r - ‘V CO) and so we oust ~-v~~.ir that ?CO) 0.

de .ineate the torru ~~~~ by t~s hypotheses Ift (141) ~-t ~~~
• to this end we aust first cORpUt~

*

(3.30) IIK (t )1l L (N l
~~ ). W

1(Q)) ‘ 
~~~~~~~~ -

-~ 0 -.~c . t... ,? 14W .. 1

sup~ ~~
vcHA(0) IIVIL1
— ~~, - ••o

1 C t)J lvi I~ ‘ ~~~~~ ~ ~ IVI
:5 up1 

——

vtH0tO) II v l~~1- 00

l i v il ’

‘ l?(t)lsu~i~~~(—7—— •

- b
~ v 1T(t)i • —

~~ l~ (t)I.go

~(t), and in -i si~ ilar fash~~n

(3.31) )J K t (t)iI L t hl(R) ~r’to~ ~ y
2 1-’ (t)l . 14 (t)I

Therefore , the conditions eabodied in (iii) of §2 will be satified

by K (t). as defined by (3.26b), provided

(3.32a) 2 
f~ i1(t)ldt + 

I
2 Ij~~~t s d t ~

~tn d

(J . 3 3 b)  y
2 

f
T

J
t )f (t—r )Idtd t & 1~~11~I~*14 t_ 1 1dtdt <



‘.7’.,

for each 7 ~ - . Col1ect .t~ our results ~~v Can t4tS the roliowi.~

L.~~e ml operators N . t5UI~ Us) *t~~~ (0 ))  and K L~(( 
- .- ;

L 5 (H~ (a)- . 14’l Co)). ~~~ are defined by (3.76g ) and (3.~,ti ) ,

respective ly , bat is fy conditions Ci), (11). and (i i) of S .

provided

CL ’) (b~1a~
) c 0

(L i ’)  4(0) 0. 1(0) s 0

(iii’ ) 1(0) a 0

and 7(t). •(t) ~~~~~~~~~~~~~~~~ (3.32a) and C3 .32b ) for each 7 *

(Addit’. n 4 L ) .y .  we requir’ tha t ~(0) 0 so th at t he d.ap~ng

coefficient Ln the systea (3.1$) is positive) .

As an .xaapls of the way in which the ro~~ .ts of I; apply

to the situation at hand we will consider the following ar. ’~1.l-

value probl.a for C2UO,T). H~Ui)), $ ) 0:

. — 1~ K (t—t)D (t)dt a 0, 0 ~ t

(3.35) D (O) s 
~~~~~~ 

D~(O) D1 ~~~~~~~ ~l ~

0, - ‘ t C —

(3.36) D~(t)
~ t ~ 0

where g($) is a .onotonically increasing function cf t for

0 ~ $ < — and Dh is continuous in the nor* with
— 2

IPi 1.(t)II, -, 0 as t • -t,. We assuae that the conditions
II

delineated in the above 1S are satisfied so that N , I~~t ) , satify

____________________________________________ __________ ________________ 

U
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( j ) , ~~~~ ~~~ (iii) of §~~; then the following result is ~ direct

‘- ‘~ r L . ’- q u ø ~~~cL. of theorem II.?: Let ~ C
2UO,T); H~(~ )), B 

) 0.

be -
~~ stx-ong solution of (,3.3&e ) - (3.36), with !(0) ‘ 0.  Suppo .

tha t

(3.37a) 
k—I 

IIDQ I J~~ • J+(0)J 11
~ 0

11 L2 ~ 1 1 L

(3.37b) ‘CD0, Dl>L > 0 (the form assumed by condition (iv) of §2)
- 2

b
(3.37c) jO T(—t)CD 0, Dh

(t )>
L dt ‘C ...2. j Pt •(~~ )<D ,Dh

(t)
H1 dt

~
th - - 2 a0 th 

_ 0_  
o

(the form assumed by condition Cv) of §2)

and that

(3.37d) T > 

~~~ 
tn(2it6<D0, Dl

>L /21r 6<DO, ~1
>L2 

— Y (0)IID)li ~~~]

for some 6 > 0 where

(3.38 )  11
6 CY ( 0 ) l i D0 ij ~~~/2 ’~D0, — i L.2 

+ 6

then

(3.39) sup IJ D B (t)JJ H1 � ~~~~~~~~ XL -—<t < T - 0 ‘Y!T

(Ia Q I1~th~~
T ) <

~0~ ~h ( T ) > H~ di 
-

where

(3.’.O) 1T ~_2J (~ + f~ I.(t)fdt J~JL~,i~~(t—c )idcdt)

+ y 2 (’) + (o ) J + J~ iT (t)Idt + J~f
t Iftt..t )ldtdt )

_ _ _ _ _ _ _ _ _ _ _ _ _ _  

i i
- 

- - -
~~~~~~~~~~~ ~~~~

-- -- -- — --- - - -  — - 

j
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~
-

- - —

~ ½ I i N I I L (Nl~j~); H~~~UZ ))

+ f~
liK (t )l1 L t hi(fl) H

_l
(5)))dt

+ f ~ f ~~i I~
Ct_ z)ii L (H1U~)~ H~~U~))

dtdt

Once g(B), the initial data D0ü), D1(x), x € (
~, and the past

history Dh(x,t), _th 
< t ‘C 0, have been specified , along with

the constitutive constants a0 and b0 and the memory functions

0(t) and ‘~(t), ~
th ‘C t ‘C T, all of the quantities on the right-

hand side of (3.39) are computable. If only the form of eithei

0(t) or ‘Ut) (or both) are known, e.g., 0(t) exp (-A 1
t ) ,

0(t) = exp (—A 2t),with Al 
> 0, A 2 

> 0 not specified or known a

priori, then (3.39) could be used as the basis for a series of

experimental tests to try to determine (or simply bound) A1 anc

A 2, i.e., we might hold the initial data, the past history 
~h’

the time interval [
~
th, T), etc., fixed and measure sup II D

~
(t)Ii Hl_t

h<t<T 
- 0

as ~ is varied continously ; in principle such a practice may b

difficult to carry out if we can not first verify that the

hypotheses of the above lemina,as well as (3.37a) - (3.37d), ar

satisfied . Other experimental tests could be based on estimates

which are analogous to (3.39) and which follow by applying

Theorem 11.1 and its Corollary to the present situation ; the

delineation of the precise forms assumed by these estimates is

~ simple exercise , completely analogous to that which resulted

in obtaining (3.39) from Theorem 11.2 and is, therefore , left

to the reader.



- __
~~~

_•
~~ -,.•‘_ •—•,- --•,•‘-•--- - •‘ - - - •‘

_
~- -—-~

-.—w---—,~
-- --.v--’- ~~

-

F 
- — 

-‘

~
References

1. Bloom, F., “Concavity Arguments and Growth Estimates for
Linear Integrodifferential Equations in Hu bert Space,
I. Undamped Equations and Applications to Maxwell-Hopkinson
Dielectrics”, (to appear).

2. Levine, H. A., “Instability and Nonexistence of Global
Solutions to Nonlinear Wave Equations of the Form

- 
- Au + F (U)” , Trans. Am. Math. Soc., vol. 192,

(1974), 1— 21. -

3. Bloom , F., “Stability and Growth Estimates for Electric
Fields in Nonconducting Material Dielectrics”, J. Math.
Anal. and Applic ., to appear.

4. Toupin , R.A. and R.S. Rivlin , “Linear Functional Electro-
• - magnetic Constitutive Relations and Plane Waves in a Hemi-

- I hedral Isotropic Material” , Archive for Rational Mechanics.
and Analysis, vol. 6, (1960), 188—197.

5. Bloom , F., “Bounds for Solutions to a Class of Damped
Integrodifferential Equations in Hu bert Space with
Applications to the Theory of Nonconducting Material
Dielectrics” , to appear.

6. Maxwell, J. C., A Treatise on Electricit~y and Magnetism(reprinted by) Dover Press, N. Y.

7. Volterra, V., Theory of Functional (1928), Dover Press, N. Y.

8. Hopkinson , J . ,  “The Residual Charge of the Leyden Jar”,
Phil. Trans. ~~~~~~~~~ Soc. London, vol. 167, (1877), 599—626.

-I


